
Audit Token to Token

January 2022

Contents

Page

Disclaimer 2

Introduction 3

Overview 4
Project summary . 4
Audit summary . 4
Vulnerability summary . 4
Code Quality summary . 4

Vulnerability 5
V1. Incorect check for "balance of" callback . 5
V2. Get dex address doesn’t work as expected . 5
V3. Guaranty the symetry by desing . 6

Code Quality 9
Q1. Use of preprocessor guard . 9
Q2. Including file in the middle of the code . 9
Q3. Separate checking . 10
Q4. Unecessary checking for own entrypoint . 10
Q5. Putting SMAK on the same side of the pair . 11
Q6. Misplacement of code chunk . 11
Q7. Miscelanous performance improvement . 11
Q8. Miscelanous readability improvement . 12

1

Disclaimer

This report does not provide any warranty or guarantee regarding the absolute bug-freenature
of the technology analyzed.

This report represents an extensive assessing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Wulfman
Corporations position is that each company and individual are responsible for their own due dili-
gence and continuous security. Wulfman Corporations goal is to help reduce the attack vectors
and the high level of variance associated with utilizing new and consistently changing technolo-
gies, and in no way claims any guarantee of security or functionality of the technology we agree
to analyze.

2

Introduction

This audit was commanded toWulfman Corporation, in quality of main contributor and expert
of LigoLANG, by SmartChain

The object of the audit is the analysis of the Token to Tokenin order to identify vulnerabilities
and contract optimizations in the source code.

The contract targets the Tezos blockchain andwas developed in LigoLANG. The auditingmeth-
ods consist in manual review

The auditing process paid special attention to ensuring that the contract logic is coherent and
implements the specification and the best testing schemes.

3

Overview

Project summary

Project Name Token to Token
Publisher SmartChain
Platform Tezos
Language LigoLANG(cameligo flavor)
Codebase https://github.com/Smartlinkhub/token-to-token/tree/master
Original commit 65f2ef1d8c816262b70ab782d99cfc5a98408f06
Contract adress
Contract url

Audit summary

Auditer Wulfman Corporation
Delivery date January 2022
Scope
Methodology Manual review
Tezos version
Tezos client version
LigoLANGversion 0.31.0

Vulnerability summary

Total issues 3
Critical 0
Major 0
Medium 1
Minor 2
Informational 0

Code Quality summary

Total improvements 10
Maintenance 4
Scalability 1
Readability 3
Origination cost 0
Gas cost 2

4

https://github.com/Smartlinkhub/token-to-token/tree/master

Vulnerability

Contents
V1. Incorect check for "balance of" callback . 5
V2. Get dex address doesn’t work as expected . 5
V3. Guaranty the symetry by desing . 6

V1. Incorect check for "balance of" callback

Category Severity Location Status
Potential inaccuracy Minor dex_token2token.mligo Fixed

Description
The fa2_balance_callback extract the amount froma list return by calling the balance_of entrypoint
of an FA2 contract. This extracting is valid when the list as a size bigger than 1, which shouldn’t be
posible since this entrypoint is always call with a list of 1 element.

Solution
the matching should differenciate between [(_,amnt)] (valid) and _ (invalide), instead of [] and
(_, amt)::_xs

N.B : this is not very important since the contract use other mecanism for checking this.

V2. Get dex address doesn’t work as expected

Category Severity Location Status
Fonctionality not working Medium factory.mligo Fixed

Description
I didn’t find a specification for the view get_dex_address. Naively, the expected behavior should be, I
provide an unorder pair (A,B) and the view return the address of the liquidity pool for the pairA/B,
which is the same as B/A. The current behavior of this view is to take an order pair A/B, reorder it
based on an input parameter (which is not needed, the caller could have send the pair in the right
order) and look for this order pair. There is two potential issues with this design :

1. if the A/B dex is deploy but the caller ask for pair B/A the get_dex_address will fail with error
DEX_ADDRESS_NOT_FOUND_IN_FACTORY, when the dex is in factory and you won’t be able to lauch
it. This will make the complete chain of call fails and requires a complete retry with swapping
the parameters

5

2. the direction field is redondant with the already order A/B and add extra layer of processing
for nothing (more of a code quality issues)

Solution
For 2., you can ask the user to always feed A/B in the order of direction=false, overall it should
changemuch for the client in term of code complexity and gas usage (probably a slight decrease)
but it will remove code complexity on the server size

For 1., there is several possibilitis with different tradeoff

1. You can keep the current specification which keep the code simple but for an external con-
tract (C) to use the views (V), the contract caller needs to first parse the list of deployed con-
tract by looking up the tezos data on internet before calling C and V

2. Change the behavior of the views to return an error instead of an exception, which would
allow the (C) to handlae and error in the use of (V)

3. You can search for both A/B and B/A which remove the limitation but increase the compu-
tation hence the gas cost

4. You can store bothA/B andB/A in themappointing to the sameaddress. Which also remove
the limitation but incease the storage size

V3. Guaranty the symetry by desing

Category Severity Location Status
Potential inaccuracy Minor dex_token2token.mligo Fixed

Description
There is unavoidable complexity in dex_token2token due to the dex being symetric with regard to
the pair A/B but the pair inmichelson are ordered and the (from_,to_) pair is an order A/B or B/A
pair.

The way it is handle in the contract is with an boolean a_to_b and several local check to do the
same processing on (A,B) or (B,A) leading to code deduplication. This duplication may lead to
copy error or desynchronisation during development.

example in swap :

1 if a_to_b
2 then
3 (((storage.token_pool_a + tokens_sold) - feeA_SMAK),
4 ((storage.token_pool_b - bought) - feeB_SMAK))
5 else
6 (((storage.token_pool_a - bought) - feeA_SMAK),
7 ((storage.token_pool_b + tokens_sold) - feeB_SMAK)) in

and

6

1 if a_to_b
2 then
3 ((token_a_transfer storage Tezos.sender Tezos.self_address tokens_sold),
4 (token_b_transfer storage Tezos.self_address t2t_to bought))
5 else
6 ((token_a_transfer storage Tezos.self_address t2t_to bought),
7 (token_b_transfer storage Tezos.sender Tezos.self_address
8 tokens_sold)) in

Solution
Use a layer of abstraction, using let from_,to_ = A,B or let from_,to_ = B,A based on a_to_b. Do
all the processing on from_ and to_ and then use the value of a_to_b to project the result back in
storage like this

1 let swap (param : token_to_token) (storage : storage) =
2 let { to = t2t_to; token_sold; min_tokens_bought; a_to_b; deadline } = param in
3 let () = check_self_is_not_updating_token_pool storage in
4 let () = check_deadline deadline in
5 (* abstraction *)
6 let

(token_pool_from,token_from_id,token_from_address),(token_pool_to,token_to_id,token_to_address)
=

↪→

↪→

7 let A,B =
8 (storage.token_pool_a,storage_token_id_a,storage.token_address_a),
9 (storage.token_pool_b,storage_token_id_b,storage.token_address_b)

10 if a_to_b then(A,B) else (B,A)
11 in
12 let (bought, feeFrom_SMAK, feeTo_SMAK) =
13 match aorb_is_smak with
14 | Some aorb_is_smak ->
15 compute_out_amount_when_A_or_B_is_SMAK a_to_b aorb_is_smak tokens_sold

token_pool_from token_pool_to↪→

16 | None -> compute_out_amount tokens_sold token_pool_from token_pool_to, 0n, 0n
17 in
18 if bought < min_tokens_bought
19 then
20 (failwith
21 error_TOKENS_BOUGHT_MUST_BE_GREATER_THAN_OR_EQUAL_TO_MIN_TOKENS_BOUGHT : (operation list

* storage))↪→

22 else (
23 let (new_pool_from, new_pool_to) =
24 ((token_pool_from + tokens_sold) - feeFrom_SMAK),
25 ((token_pool_to - bought) - feeTo_SMAK)
26 in
27 let new_pool_from : nat =
28 match is_nat new_pool_from with

7

29 | None ->
30 (failwith error_TOKEN_POOL_MINUS_TOKENS_BOUGHT_IS_NEGATIVE : nat)
31 | Some difference -> difference in
32 let new_pool_to =
33 match is_nat new_pool_to with
34 | None ->
35 (failwith error_TOKEN_POOL_MINUS_TOKENS_BOUGHT_IS_NEGATIVE : nat)
36 | Some difference -> difference in
37 let (op_token_from_transfer, op_token_to_transfer) =
38 ((token_transfer token_from_address token_from_id Tezos.sender Tezos.self_address

tokens_sold),↪→

39 (token_transfer token_to_address token_to_id Tezos.self_address t2t_to bought))
40 let op_token_transfer =
41 opt_operation_concat op_token_from_transfer op_token_to_transfer in
42 (* projection *)
43 let ((new_pool_a,feeA_SMAK),(new_pool_b,feeB_SMAK)) =
44 let a,b = ((new_pool_from,feeFrom_SMAK),(new_pool_to,feeTo_SMAK)) in
45 if a_to_b then (a,b) else (b,a)
46 in
47 let new_history =
48 Big_map.update "token_pool_a" (Some new_pool_a) storage.history in
49 let new_history =
50 Big_map.update "token_pool_b" (Some new_pool_b) new_history in
51 let amounts_and_fees_out =
52 compute_fees storage new_pool_a new_pool_b feeA_SMAK feeB_SMAK in
53 let ops_pay_fees =
54 withdraw_or_burn_fees storage amounts_and_fees_out.reserve_fee_in_A
55 amounts_and_fees_out.reserve_fee_in_B in
56 let storage =
57 {
58 storage with
59 token_pool_a = amounts_and_fees_out.amount_in_A;
60 token_pool_b = amounts_and_fees_out.amount_in_B;
61 history = new_history;
62 last_k =
63 (amounts_and_fees_out.amount_in_A * amounts_and_fees_out.amount_in_B)
64 } in
65 ((operation_concat op_token_transfer ops_pay_fees), storage))

8

Code Quality

Contents
Q1. Use of preprocessor guard . 9
Q2. Including file in the middle of the code . 9
Q3. Separate checking . 10
Q4. Unecessary checking for own entrypoint . 10
Q5. Putting SMAK on the same side of the pair . 11
Q6. Misplacement of code chunk . 11
Q7. Miscelanous performance improvement . 11
Q8. Miscelanous readability improvement . 12

Q1. Use of preprocessor guard

Category Impact Location Status
Informational Maintenance all ligo file Acknowledge

Description
The codebase use the good c-style practice of file guard to avoid infinite loop in include cycles.
Note that ligo contrary to C doesn’t separate signature from code andwhile the guard prevent the
preprocessor from looping indefinetly. It we fails in the typechecker with an error that may be not
so clear.

Solution
To avoid dependency cycle, prefer using the #import pragma which detect dependency cycle and
print the correcponding error. N.B : Since the code is produce from OCaml, you should already
have dune checking for depenency cycle.

Q2. Including file in the middle of the code

Category Impact Location Status
Bad design Maintenance factory.mligo Acknowledge

Description
The design of #include in ligo, allow to do put the content of a file anywhere in the code. the file
factory.mligo take adventage of this design by injecting the code of the contract directly inside
a michelson_insertion. This is convenant to keep the file in sync with the contract. But it disable

9

ligo typechecking for the contract being deploy. Furthermore, in the futur LigoLANGwon’t allow
#include to be used anywhere in the code.

Solution
Instead of deploy through a michelson_insertion,
You can directly use the ligo command Tezos.create_contract For this, you need to first import the
ligo contract :

1 #import "dex_token2token.mligo" "Token2Token"
2

3 let deploy_dex (init_storage : dex_storage) : (operation * address) =
4 Tezos.create_contract Token2Token.main (None : key_hash option) Tezos.amount

init_storage↪→

(replace main by the name of the entrypoint if different)

Q3. Separate checking

Category Impact Location Status
Code smell Readability dex_misc.mligo Fixed

Description
The function update_token_pool_internal_checks group several test that are not related. the enty-
point that call the checks is less readible, i.e. it takes more effort to go look in another file to see
the list of assertion that are being check by the entrypoint.

Solution
Separate the different checking and put them in the entrypoint.

Q4. Unecessary checking for own entrypoint

Category Impact Location Status
Informational Gas cost dex_token2token.mligo Acknowledge

Description
The function update_token_pool_aux calls get_entrypoint2 which call a Tezos.get_entrypoint_opt on
itself and return an error if the entrypoint doesn’t exist. By contruction, we know if the entrypoint
is present in the contract that we are developping. If it is a good practice to check for this during
development to spot mistakes. In deployement, this will lead to extra instruction for checking a
condition that is always true. This is unecessary cost for the user.

10

Solution
Replace Tezos.get_entrypoint_opt with Tezos.get_entrypoint.
Alternatively, by Option.unopt (Tezos.get_entrypoint_opt ...).

Q5. Putting SMAK on the same side of the pair

Category Impact Location Status
Suggestion Maintenance & Gas cost factory & dex Acknowledge

Description
Since A/B pool is the same as B/A pool, you could had the convention that a pair with smak will
have SMAK always on A or B. This would require a bit of extra logic in factory at the creation of the
pool but it would simplify the logic of the dex contract and possibly some gas cost.

Note : This is not compatible with the proposal for V3.

Q6. Misplacement of code chunk

Category Impact Location Status
Code smell Maintenance & Readability contract Acknowledge

Description
Someof the code ismisplaced. For instance, thedatastructure dex_storage is located in comman_types
instead of dex_types

Q7. Miscelanous performance improvement

Category Impact Location Status
Suggestion Gas cost DEX Acknowledge

Description
The entrypoint use a nested variant inside the main variant. As variant are compiled to a tree of
some, this design produce an inbalance tree that result in more operation to manipulate it in aver-
age. The same happenswhen using [@layout:comb], and it should be avoidedwhen not necessary.
It doesn’t seem that add_liquidity and remove_liquidity need to be comb

11

Description
By construction tokens_a_withdrawn is smaller than token_pool_a
(equal to token_pool_a*lqt_burned/lqt_total and we check that lqt_burned < lqt_total).
While it is a good practice to check posible negative value when casting from int to nat, when we
already have that guarantee, you can simply replace is_nat by abs, which will reduce the gas cost.

Q8. Miscelanous readability improvement

Category Impact Location Status
Suggestion Readability DEX Acknowlegde

Description
The errors are all prefixed with error_. This is a good design pattern and it can be "automated" by
taking adventage of module

1 module Error = struct
2 ...
3 end

12

	Disclaimer
	Introduction
	Overview
	Project summary
	Audit summary
	Vulnerability summary
	Code Quality summary

	Vulnerability
	Incorect check for "balance of" callback
	Get dex address doesn't work as expected
	Guaranty the symetry by desing

	Code Quality
	Use of preprocessor guard
	Including file in the middle of the code
	Separate checking
	Unecessary checking for own entrypoint
	Putting SMAK on the same side of the pair
	Misplacement of code chunk
	Miscelanous performance improvement
	Miscelanous readability improvement

